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Noncommutative Symmetric Differences
in Orthomodular Lattices
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We deal with the following question: What is the proper way to introduce symmetric
difference in orthomodular lattices? Imposing two natural conditions on this operation,
six possibilities remain: the two (commutative) normal forms of the symmetric differ-
ence in Boolean algebras and four noncommutative terms. It turns out that in many
respects the noncommutative forms, though more complex with respect to the lattice
operations, in their properties are much nearer to the symmetric difference in Boolean
algebras than the commutative terms. As application we demonstrate the usefulness of
noncommutative symmetric differences in the context of congruence relations.
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1. INTRODUCTION OF SYMMETRIC DIFFERENCES

The symmetric difference plays a prominent role in the theory of Boolean
algebras (BA). For instance, important properties of congruence relations in BA
such as permutability, regularity and uniformity of congruences follow mainly
from the fact that the symmetric difference is an associative, cancellative and
invertible term function. We will recall all these notions later in detail when we
deal with it.

Thus it is a manifest task to investigate symmetric difference in the more
general framework of orthomodular lattices (OML). Some work in this direction
can be found in (Dorfer et al., 1996) and (Länger, 1998).

An orthomodular lattice L = (L,∨,∧,′ , 0, 1) is a bounded lattice
(L,∨,∧, 0, 1) with an orthocomplementation ′, i.e., for all x, y ∈ L

x ∧ x ′ = 0, x ∨ x ′ = 1, x ′′ = x, x ≤ y implies y ′ ≤ x ′,

and L satisfies the orthomodular law:

x ≤ y implies y = x ∨ (y ∧ x ′).
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As distinguished from Boolean algebras orthomodular lattices are not dis-
tributive. The following two relations provide some kind of a measure for nondis-
tributivity in a particular OML:

– The commutativity relation C: aCb if and only if the subalgebra generated
by {a, b} in L is Boolean. For instance, a ≤ b or a ≤ b′ implies aCb.

– The perspectivity relation ∼: a ∼ b if and only if a and b have a common
(algebraic) complement, i.e. there exists an element c ∈ L such that

a ∧ c = b ∧ c = 0, a ∨ c = b ∨ c = 1.

An OML L is a BA if and only if C is the all relation or, equivalently, if and only
if ∼ is the identity.

For a solid introduction to the theory of OML we refer to (Kalmbach, 1983).
We recall a smart technique of Navara (1997) to represent elements and

simplify computations in the free OML F(x, y) with free generators x and
y: Let c(x, y) := (x ∧ y) ∨ (x ∧ y ′) ∨ (x ′ ∧ y) ∨ (x ′ ∧ y ′) denote the commu-
tator of x and y. Instead of (c(x, y))′ we simply write c′(x, y). F(x, y) ∼=
[0, c(x, y)] × [0, c′(x, y)], where [0, c(x, y)] ∼= 24 is the 16-element BA (which is
the free BA generated by two elements) with atoms x ∧ y, x ∧ y ′, x ′ ∧ y, x ′ ∧ y ′,
and [0, c′(x, y)] ∼= MO2 is the six-element OML with atoms x ∧ c′(x, y), y ∧
c′(x, y), x ′ ∧ c′(x, y), y ′ ∧ c′(x, y).

�
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The representation of elements in F(x, y) refers to the following scheme:

�
�

� �
�

x y

y ′
x ′

The discs correspond to the Boolean part and the bars to the MO2-part of F(x, y).
Full/empty discs refer to the presence/absence of the corresponding atoms in the
Boolean part and corner angles represent the atoms in the MO2-part. While we deal



Noncommutative Symmetric Differences in OML 887

with F(x, y), deviating from (Navara, 1997), we do not indicate the generators
x and y separately. In the representation one just has to remember that x is the
element down left, y down right and complements are vis-à-vis. For instance,

(x ∧ y ′) ∨ (x ′ ∧ y) = , x ′ ∧ c′(x, y) = , 1 =
Computations in F(x, y) decompose into a Boolean part with set-theoretical oper-
ations on the discs, and a MO2-part with operations on the corner angles following
the evaluation rules in MO2. For instance,

x = (x ∧ c′(x, y)) ∨ ((x ∧ y) ∨ (x ∧ y ′)) = ∨ = ,

x ′ ∨ y = ( )′ ∨ = ∨ = = ( )′ = (x ∧ y ′)′.

In an attempt to adopt symmetric difference for OML the first striking thing is
that two different terms representing the symmetric difference in a BA may differ
when they are evaluated in an OML. In particular, consider the disjunctive and
conjunctive normal form

x � y := (x ∧ y ′) ∨ (x ′ ∧ y),
x 	 y := (x ∨ y) ∧ (x ′ ∨ y ′).

Applying these operations in MO2 with generating elements a, b, we obtain

a � b = a � b′ = a′ � b = a′ � b′ = 0,

a 	 b = a 	 b′

= a′ 	 b = a′ 	 b′ = 1.

In fact the difference between these two operations could not be larger.
First of all we have to make clear what we understand by a symmetric

difference. We impose the following two natural conditions.

Definition 1. A binary operation + in an OML L is called symmetric difference if

(i) + is a term function,
(ii) + coincides with the conventional symmetric difference if L is a BA.

The first objective is to find out how many such operations exist.

Theorem 2. For OML there are exactly six possibilities to define an operation
such that (i) and (ii) are satisfied:

x � y = (x ∧ y ′) ∨ (x ′ ∧ y)
x 	 y = (x ∨ y) ∧ (x ′ ∨ y ′)
x +l y := (x ∨ (x ′ ∧ y)) ∧ (x ′ ∨ y ′)
x +r y := ((x ∧ y ′) ∨ y) ∧ (x ′ ∨ y ′)
x +l′ y := (x ∨ y) ∧ (x ′ ∨ (x ∧ y ′))
x +r ′ y := (x ∨ y) ∧ ((x ′ ∧ y) ∨ y ′)
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Proof: Let FBA(u, v) denote the free BA with free generators u and v. We
consider the homomorphism

ϕ :



F(x, y) → FBA(u, v)

x �→ u

y �→ v

Condition (i) and (ii) in Definition 1. exactly mean that the symmetric differences
are given by the terms in ϕ−1(u 	 v). Using Navara’s technique these elements
have the following representation:

= (x ∧ y ′) ∨ (x ′ ∧ y) = x � y

= ((x ∧ y ′) ∨ (x ′ ∧ y)) ∨ c′(x, y) = (x ∨ y) ∧ (x ′ ∨ y ′) = x 	 y

= ((x ∧ y ′) ∨ (x ′ ∧ y)) ∨ (x ∧ c′(x, y)) = (x ∨ (x ′ ∧ y)) ∧ (x ′ ∨ y ′)

= ((x ∧ y ′) ∨ (x ′ ∧ y)) ∨ (y ∧ c′(x, y)) = ((x ∧ y ′) ∨ y) ∧ (x ′ ∨ y ′)

= ((x ∧ y ′) ∨ (x ′ ∧ y)) ∨ (x ′ ∧ c′(x, y)) = (x ∨ y) ∧ (x ′ ∨ (x ∧ y ′))

= ((x ∧ y ′) ∨ (x ′ ∧ y)) ∨ (y ′ ∧ c′(x, y)) = (x ∨ y) ∧ ((x ′ ∧ y) ∨ y ′)

�

To point up the difference between the six terms we rewrite two of them in
Navara’s notation:

x +l y = +l = , x �y = � =
In the Boolean part in both cases the conventional symmetric difference is formed,
in the MO2-part the arguments do not commute and +l results in the left argument
whereas 	 results in the join.

Next we summarize some properties of symmetric differences. We omit the
proof which is straightforward.

Proposition 3. In F(x, y) the following holds true.

(i) x 	 y = y 	 x = x ′ 	 y ′ = (x ∨ y) 	 (x ∧ y),
(ii) x � y = (x 	 y ′)′, x 	 y = (x � y ′)′,

(iii) x 	 y and x � y commute with both x and y,
(iv) x +l y = y +r x = x ′ +l′ y ′ = y ′ +r ′ x ′,
(v) (x +l y)′ = x ′ +l y,

(vi) x +l y commutes with x but does not commute with y.

In this proposition it becomes evident that there are strong interrelations
between the six symmetric differences and that they naturally split into two
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subclasses: one consisting of the commutative 	 and � and the other one con-
taining the remaining four noncommutative terms. Operations within the same
subclass behave very similar and, as will turn out, operations from different classes
differ in their properties. Thus in the following we will state results for 	 and +l

only. These results may be reformulated for the other symmetric differences by
the help of Proposition 3 easily.

Let in the following L = (L,∨,∧,′ , 0, 1) denote an arbitrary OML and
a, b, c elements of L. The next proposition will clarify to what extent the six
symmetric differences may differ.

Proposition 4.

(i) If a commutes with b then all six symmetric differences of a and b are
equal.

(ii) If a does not commute with b then the six symmetric differences of a and
b are pairwise different.

Proof: In F(x, y) the six symmetric differences of x and y form an interval
isomorphic to MO2, in L the symmetric differences of a and b thus form a
homomorphic image of MO2. Since MO2 is simple, this image either consists of
one element, which is the case if a commutes with b, or is isomorphic to MO2 if
a does not commute with b. �

Corollary 5.

(i) If two distinct symmetric differences coincide on the whole of L then L
is a BA.

(ii) If +l is commutative then L is a BA.

CANCELLATIVITY, INVERTIBILITY, AND ASSOCIATIVITY
OF SYMMETRIC DIFFERENCES

In this section we study symmetric differences in OML with respect to
important properties the symmetric difference fulfils in a BA.

For the convenience of the reader we recall some basic notions from algebra.
A binary operation ◦ on a set A is called right cancellative (left invertible) if
for arbitrary a, b ∈ A the equation x ◦ a = b has at most (at least) one solution
x ∈ A. Left cancellativity (right invertibility) is defined accordingly. An operation
is cancellative (invertible) if it is both left and right cancellative (left and right
invertible).

Firstly we recall some known results (cf. Dorfer et al., 1996, Proposition 3.4,
Lemma 3.6).
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Proposition 6.

(i) Two elements a and b are perspective to each other if and only if there
exists c such that a 	 c = b 	 c.

(ii) Two elements a and b commute if and only if there exists an element c

such that a 	 c = b.

By (i) we may interpret the relation of perspectivity in an OML as a measure
for how far the symmetric difference 	 is from being cancellative, and by (ii)
the same applies to the complement of the commutativity relation with respect to
invertibility of 	.

Theorem 7. In the variety of OML the symmetric difference +l satisfies the
identity

(x +l y) +l y = x.

Corollary 8.

(i) The symmetric difference +l is right cancellative, i.e., if a +l b = c +l b

then a = c.

(ii) +l is left invertible, i.e., for all a and b there exists c such that c +l a = b.

Proof: Again we apply Navara’s technique to verify the identity:

(x +l y) +l y = ( +l

) +l = +l = = x.

The corollary now follows easily. (i): If a +l b = c +l b then by +l-adding
b at the right we obtain a = c.

(ii): Choose c = b +l a. �

In comparison to Proposition 6 we characterize elementwise under which
conditions left cancellation is possible and a right inverse exists for the operation
+l .

Proposition 9.

(i) In general +l is not left cancellative, in particular b +l a = b +l c if and
only if b ∧ a = b ∧ c and b′ ∧ a = b′ ∧ c.

(ii) Two elements a and b commute if and only if there exists c such that
a +l c = b.

Here we employ Navara’s technique (as it was done in (Navara, 1997)) to
represent terms in two variables without assuming that these variables are free
generators. As a consequence the representations may not be unique in this case.
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To distinguish this from the case with free generators we indicate the generators
as indices in the corresponding positions. For example in MO2 with generators a

and b we have c(a, b) = 0, i.e., a b
= a b

.

Proof: (i): If b +l a = b +l c, i.e., b a
= b c

then intersecting both sides
with b′ = b a

= b c
we arrive at b a

= b c
, i.e., b′ ∧ a = b′ ∧ c.

Joining both sides with b′ we obtain b a
= b c

, hence b′ ∨ a′ = b′ ∨ c′,
i.e., b ∧ a = b ∧ c.

Conversely, if b ∧ a = b ∧ c and b′ ∧ a = b′ ∧ c then immediately b +l a =
b +l c follows.

(ii) is obvious. �

Corollary 10. If a symmetric difference is cancellative or invertible on L then
L is a BA.

In this context we recall (Dorfer et al., 1996, Theorem 3.8).

Proposition 11. In the variety of OML there does not exist a binary term inducing
a cancellative, respectively invertible, term function on every OML.

As next step we address associativity of symmetric differences in OML.

Proposition 12. The following are equivalent:

(i) a commutes with b,
(ii) (a 	 b) 	 b = a 	 (b 	 b),

(iii) a +l (a +l b) = (a +l a) +l b.

Proof: Evidently (i) implies (ii) and (iii).
(ii) implies (i): Simplifying the left hand side we get

(a 	 b) 	 b = a b
	 a b

= a b
.

The right hand side is a 	 (b 	 b) = a = a b
. Obviously a b

= a b
implies

that a commutes with b.
A similar argument yields that (iii) implies (i). �

We see that the associative law is valid for symmetric differences in OML in
some special situations only. The following corollary is derived easily.

Corollary 13. If a symmetric difference is associative in L then L is a BA.
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We also provide a positive result where again the discrepancy among sym-
metric differences appears.

Proposition 14. If b commutes with a and c then

(i) (a 	 b) 	 c = a 	 (b 	 c),
(ii) (b +l a) +l c = b +l (a +l c).

Proof: We proof (ii) in detail, (i) follows similarly.
Since b commutes with a and c all computations occur in the commutator

C(b) ∼= [0, b] × [0, b′] (see e.g. Kalmbach, 1983, 1.3.1. Theorem). Therefore it is
sufficient to verify the assertion for b = 0 and b = 1.

For b = 0 we have

(0 +l a) +l c = a +l c = 0 +l (a +l c),

and for b = 1 due to Proposition 3

(1 +l a) +l c = a′ +l c = (a +l c)′ = 1 +l (a +l c).

�

Without going into detail we mention that also the distributivity of the meet
operation with respect to the symmetric difference cannot be generalized from BA
to OML even if one additionally considers also all possible meet operations (in
the sense of Definition 1).

3. CONGRUENCE RELATIONS

It is well known that there is a bijection between congruence relations of an
OML L and certain ideals of L, so-called p-ideals (Finch, 1996; or orthomodular
ideal, see Kalmbach, 1983): A lattice ideal I is a p-ideal if it is closed under
perspectivity, i.e., a ∈ I and b ∼ a imply b ∈ I . For a congruence θ on L and
a ∈ L let [a]θ denote the congruence class of a. In the following theorem the
relationship between congruences and p-ideals is summarized.

Theorem 15.

(i) I = [0]θ for some congruence θ if and only if I is a p-ideal.
(ii) A lattice ideal I is a p-ideal if and only if for all x in L

x ∧ (I ∨ x ′) ⊆ I

(where x ∧ (I ∨ x ′) = {x ∧ (i ∨ x ′) | i ∈ I }).
(iii) For a p-ideal I the congruence θ corresponding to I is given by the

condition xθy if and only if x 	 y ∈ I.
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Using a noncommutative symmetric difference this result can be modified as
follows.

Proposition 16.

(ii’) A lattice ideal I is a p-ideal if and only if for all x in L

x +l (I +l x) ⊆ I.

(iii’) For a p-ideal I the congruence θ corresponding to I is given by the
condition xθy if and only if x +l y ∈ I.

Proof: (ii’): We compare the elements x ∧ (i ∨ x ′) and x +l (i +l x) for x in L

and i in I .

x ∧ (i ∨ x ′) = x i
∧ (

x i
∨ x i

)

= x i
∧ x i

= x i
,

x +l (i +l x) = x i
+l

(
x i

+l x i

)

= x i
+l x i

= x i
.

This means that x +l (i +l x) = (x ∧ (i ∨ x ′)) ∨ (i ∧ x ′). Since i ∧ x ′ is in I

(I is an order ideal) this means that the conditions in (ii) and (ii’) are equivalent.
(iii’): We have to show that for a p-ideal I the condition x 	 y ∈ I is equiv-

alent to x +l y ∈ I . Since x +l y ≤ x 	 y one direction is clear. On the other
hand, if x +l y ∈ I then y +l x = y +l ((x +l y) +l y) is also in I (see (ii’)), and
x 	 y = (x +l y) ∨ (y +l x). �

Remark 1. We want to point out that using noncommutative symmetric differ-
ences we can state the requirements for a congruence kernel (p-ideal) of an OML
very similar to groups/Boolean algebras. One can even push this similarity further:

Proposition 17. A subset I of L is a congruence kernel if and only if

(i) (I,+l , 0) is a subalgebra of (L,+l , 0) (subgroup condition),
(ii) x +l (I +l x) ⊆ I for all x ∈ L (normal subgroup condition),

(iii) I is an order ideal in (L,≤) (as in BA).

Though these conditions seem very natural one has to be careful: for instance,
the second condition may not be substituted by (x +l I ) +l x ⊆ I for all x ∈ L.
We leave the proof to the interested reader.
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Now we turn towards congruence classes. We recall some notions from universal
algebra. An algebra is called

– congruence regular if, for any congruence of this algebra, every congruence
class determines the whole congruence uniquely,

– congruence uniform if for any fixed congruence all congruence classes
have the same cardinality,

– congruence permutable if any two congruences θ and φ permute, i.e.,

θ ◦ φ = φ ◦ θ (= θ ∨ φ).

A variety of algebras is called congruence regular (uniform, permutable) if all
algebras of this variety have this property. For varieties congruence permutability
and congruence regularity can be characterized by so-called Mal’cev conditions
(cf. Csákány, 1970; Mal’cev, 1954).

Theorem 18.

(i) A variety is congruence permutable if and only if there exists a ternary
term m(x, y, z) such that the identities

m(x, z, z) = x, m(x, x, z) = z

hold true in the variety. m(x, y, z) is called Mal’cev term for this variety.
(ii) A variety is congruence regular if and only if there exist ternary terms

t1(x, y, z), . . . , tn(x, y, z) such that the condition

[t1(x, y, z) = z, . . . , tn(x, y, z) = z] if and only if x = y

is fulfilled in the variety. t1(x, y, z), . . . , tn(x, y, z) are called Csákány
terms for this variety.

Theorem 19. In the variety of OML the term

(x +l y) +l z

is a Mal’cev and a Csákány term.

Proof: (x +l y) +l z is a Mal’cev term: By Theorem 7 we have

(x +l z) +l z = x,

and obviously

(x +l x) +l z = 0 +l z = z.

(x +l y) +l z is a Csákány term: The if part of the condition in Theorem 18 (ii)
was verified just before. Now, suppose (x +l y) +l z = z, then by +l-adding z from
the right side we get x +l y = 0 and by adding y we arrive at x = y. �
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Let I be a p-ideal, θ the congruence relation corresponding to I and a in
L. In Dorfer (2001, Proposition 3.2, 3.3) the following relationship between the
congruence classes of θ was given:

[a]θ = a ∨ (I ∧ a′), I = [a]θ 	 [a]θ.

Using non-commutative symmetric differences much simpler (group-like) formu-
las occur.

Theorem 20. If θ is a congruence in L, I = [0]θ and a ∈ L then

(i) [a]θ = I +l a,

(ii) I = [a]θ +l a.

In particular, these formulas provide bijections between the congruence classes.

Proof: (i): If i ∈ I then (i +l a)θ (0 +l a) = a. Conversely, if x ∈ [a]θ then
(x +l a)θ (a +l a) = 0, hence x +l a ∈ I and by Theorem 7 x = (x +l a) +l a ∈
I +l a.

(ii): [a]θ +l a = (I +l a) +l a = I . The concluding assertion follows
easily. �

We should mention that with commutative symmetric differences no such
simple formulas can be found. A similar phenomenon appears when terms repre-
senting implication in OML are investigated (cf. Chajda et al., 2001).

Finally we repeat a result (cf. Dorfer, 2001, Theorem 4.1–4.3), which now is
an immediate consequence of Theorem 19 and Theorem 20.

Corollary 21. The variety of OML is congruence regular, uniform and
permutable.
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Chajda, I., Halaš, R. and Länger, H. (2001). Orthomodular implication algebras. International Journal
of Theoretical Physics 40, 1875–1884.
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